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Abstract 
 
The use of data processing methods in high resolution NMR spectroscopy is explained. These 
approaches include manipulation of the NMR FID to improve the signal-to-noise ratio or spectral 
resolution, manipulations of the frequency spectrum to correct phases and base line errors, and 
the determination of peak positions and intensities. Various approaches for improving 
incomplete data sets are also outlined. Finally, some more recent approaches for fast 2-
dimensional NMR and for statistical analysis of spectra are covered. 
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Introduction 
 
Computers play a central part in modern NMR spectroscopy. Their use for the real-time control 
of pulsed NMR experiments has enabled the development of multiple pulse techniques such as 
two-dimensional NMR; this article deals with the part played by computers in the acquisition, 
processing and presentation of experimental NMR data. 
 
All NMR experiments rely on the excitation of a nuclear spin response by a radiofrequency 
magnetic field, usually in the form of a short pulse or pulse sequence. This generates a rotating 
nuclear magnetic moment, which induces a small oscillating voltage in the probe coil: a ‘free 
induction decay’ (FID). The spectrometer receiver amplifies this voltage, and it is shifted down 
into the audio frequency range, with high-frequency components being filtered out, before the 
digitized signal is recorded for processing. Two signals with phases 90° apart are recorded 
(‘quadrature detection’), to allow the relative signs of frequencies to be distinguished. In current 
spectrometers the frequency shifting, filtration, and quadrature detection are all performed 
digitally (“digital signal processing”, DSP), the high-frequency signal being digitized by a fast 
analogue-to-digital converter (ADC). Previous spectrometers used two independent 0° and 90° 
analogue electronic channels for the frequency shifting (“mixing”) and filtration, digitizing only 
at the last stage when the range of signal frequencies is low and hence a relatively slow ADC 
suffices. 
 
From this point onwards the signal is handled digitally until it is presented to the experimenter as 
a printed spectrum or an interactive spectral display. The three main stages of processing are 
first, the acquisition, using analogue or digital signal processing, of a filtered, averaged time-
domain recording of the nuclear spin response; second, the generation of a frequency-domain 
spectrum, usually but not always by Fourier transformation; and third, postprocessing of the 
spectrum to aid its interpretation. The three stages are summarized briefly below, followed by 
more detailed discussions of the techniques used and some practical illustrations. 

Data Acquisition 
NMR experiments generally require the co-addition of a number of recordings of the nuclear 
spin response (‘transients’), often using different permutations of radiofrequency pulse and 
receiver phases (‘phase cycling’). The data are recorded as a set of complex numbers which 
sample the in-phase and quadrature NMR signals as a function of time. Early Fourier transform 
spectrometers had limited word length and required some scaling of the data before coaddition, 
but this is no longer necessary and successive transients are simply added to memory. The use of 
DSP gives better filtration of unwanted noise and signals, better effective ADC resolution, and 
less baseline distortion. 
 
In two-dimensional (2D) NMR a series of FIDs is acquired using a pulse sequence containing a 
variable evolution period, which is incremented regularly to map out the behaviour of the nuclear 
signal as a function both of real time t2 during the FID, and of the evolution time t1. A typical 2D 
NMR experiment might acquire 512 FIDs of 1024 complex points, which would then be doubly 
Fourier transformed as a function of the two time variables. 3D and 4D NMR extend the 



principle to two and three evolution periods respectively, but time constraints limit the number of 
samples in each dimension more severely, and increase the pressure to use non-uniform sampling 
of the signal (see below). A very effective alternative where high resolution is not required is to 
use methods borrowed from echo-planar imaging to encode indirect spectral dimensions 
spatially, allowing a complete 2D dataset to be recorded in less than a second. 

Spectrum Generation 
To make the raw experimental data interpretable they must be converted into a frequency-
domain spectrum. The classical, and commonest, method is discrete Fourier transformation. This 
is a linear operation: the information content of the data is unchanged. Alternative methods such 
as maximum entropy reconstruction and linear prediction are nonlinear, changing the 
information content. In Fourier processing a weighting function is usually applied to the time-
domain data before transformation; a DC correction based on the last portion of the data may 
also be performed. After weighting and any zero-filling (see below), the fast Fourier transform 
(FFT) algorithm is used to produce the frequency spectrum. The resultant spectrum consists of a 
set of complex numbers sampling a defined frequency range at equal intervals. In general the real 
and imaginary parts of the spectrum will both be mixtures of absorption mode and dispersion 
mode signals; a spectrum suitable for display and analysis is obtained by taking linear 
combinations of the real and imaginary data (‘phasing’), or, if that is not possible, by taking the 
modulus (‘absolute value mode’) or square modulus (‘power mode’). 
 
In 2D NMR, weighting and zero-filling are carried out on the FIDs as normal, but after Fourier 
transformation with respect to t2 to give a series of spectra S(t1, F2) the data matrix is transposed 
to give a set of ‘interferograms’ S(F2, t1). A second Fourier transformation, with respect to t1, 
yields the 2D spectrum S(F1, F2). Because most coherence transfer processes cause amplitude 
rather than phase modulation as a function of t1, information on the signs of F1 frequencies is 
usually missing; it can be recovered by making two measurements using different phase cycles. 
If the two sets of measurements are combined before Fourier transformation, converting 
amplitude modulation into phase modulation, absolute value mode presentation is generally 
required because individual signals will show a ‘phase-twist’ line shape; this is also the case with 
simple experiments which use pulsed field gradients for coherence transfer pathway selection. If 
the two data sets are recombined appropriately after the first Fourier transformation, both phase 
cycled and pulsed field gradient 2D experiments can be made to yield pure double absorption 
mode line shapes. Two common recombination schemes are the ‘hypercomplex’ method of 
States, Haberkorn and Ruben, and the time-proportional phase incrementation (TPPI) method of 
Marion and Wüthrich. 

Postprocessing 
Many chemical questions can be answered with a simple spectrum, but to extract all the useful 
information from an NMR experiment it can require a wide range of data processing methods. 
Integration (usually after baseline correction) and peak picking allow the relative numbers of 
spins responsible for different multiplets to be found, and chemical shifts and scalar couplings to 
be measured. Better measures of signal intensity and line shape can be found by least-squares 



fitting, if necessary in conjunction with line shape correction by reference deconvolution. 
Computers can also aid in the analysis of strongly coupled spectra and the spectra of dynamic 
systems. 

Zero-Filling 
Data acquisition produces a set of N complex points, sampled at equal time intervals Δt, which 
describe the nuclear FID as 2N independent pieces of information. Discrete Fourier 
transformation of these data will produce a spectrum of N complex points, at frequency intervals 
1/(NΔt). A final absorption mode spectrum will contain just N independent pieces of information, 
only half the amount originally acquired; the remaining N points form the dispersion mode 
spectrum. Full use of the experimental data can be achieved if N complex zeroes are appended to 
it before Fourier transformation (‘zero-filling’). Transforming N data points plus N zeroes 
generates a spectrum of 2N complex points, at frequency intervals 1/(2NΔt) Hz. The 2N real 
points are independent, and contain the same information as the 2N imaginary points: the real 
and imaginary data are correlated, so the total information content of the spectrum is unchanged. 
Zero-filling thus improves the digital resolution of the frequency spectrum twofold, as can be 
seen from Figure 1. Appending more than N zeroes before transformation cannot increase the 
information content of the spectrum: the extra data points obtained simply interpolate between 
those produced by a single zero-filling. 



 
Figure 1  

Spectra of a doublet with splitting 2 Hz, centred at −10 Hz, calculated for a 64 complex point 
FID with (a) no zero-filling; (b) one zero-filling, to 128 complex points; and (c) four zero-

fillings, to 1024 complex points. The splitting becomes visible after one zero-filling; further 
zero-filling is equivalent to interpolation between the data points with a sin(x)/x function. 

Time-Domain Weighting 
All experimental NMR signals decay, sooner or later: most well-designed experiments sample 
the signal until it has decayed close to zero. The later stages of the recorded data contain less 
signal, but the noise remains more or less constant. Recording for too short a time will lose 
valuable data; recording for too long will emphasize the noise relative to the signal. The widths 
of spectral lines depend on the rate of decay of the NMR signal: resolution can be improved if 
the natural decay of the signal is counteracted. Both issues can be addressed by weighting the 
time-domain signal before Fourier transformation. The choice of weighting function determines 
the compromise between resolution and signal-to-noise ratio in the resultant spectrum. 
 



The signal-to-noise ratio of a spectrum can be optimized by multiplying the experimental signal 
by a weighting function which matches the experimental decay envelope: ‘matched filtration’. 
The Fourier transform of an exponential decay with time constant T is a Lorentzian line shape 
with a full width at half height of 1/(πT) Hz. Thus to obtain the best signal-to-noise ratio for a 
Lorentzian line of width W Hz the experimental data should be multiplied by a decaying 
exponential of time constant 1/(πW) s. This gives a spectrum with optimum signal-to-noise ratio, 
at the expense of a doubling of the line width to 2W Hz. Where a spectrum with poor signal-to-
noise ratio contains lines with a range of widths it can be helpful to try exponential weighting 
with several different time constants. 
 
Time-domain weighting is equivalent to frequency-domain convolution. The convolution 
theorem states that the Fourier transform of the product of two functions a(t) and b(t) is the 
convolution of the two individual transforms A(ν) and B(ν): 
[1] 

 
where FT−[ ] indicates Fourier transformation and ⊗, denotes convolution. Thus time-domain 
exponential weighting is equivalent to convolution, or smoothing, with a Lorentzian lineshape in 
the frequency domain. Matched filtration corresponds to smoothing the raw experimental 
spectrum with a function which matches the experimental line shape, as Figure 2 illustrates. 

 
Figure 2  

75.4 MHz spectra of the 13C triplet of deuteriobenzene in the ASTM (American Society for 
Testing and Materials) sensitivity test sample (60% deuteriobenzene/40% dioxane), with and 

without matched filtration. The unweighted spectrum (a) shows a signal-to-noise ratio of 18:1; 
the same data given an exponential multiplication with a time constant 1/(3π) s before Fourier 



transformation, corresponding to a 3 Hz Lorentzian line broadening, show (b) a signal-to-noise 
ratio of 92:1. An acquisition time of 5.462 s was used, with a spectral width of 12000 Hz and one 

zero-filling. The insets show expansions of the triplet signal, illustrating the broadening of the 
lines and the smoothing of the noise caused by the exponential multiplication. 

 
Time-domain weighting is also extensively used for resolution enhancement. Since this 
emphasizes the later part of the experimental signal, the noise energy is increased with respect to 
the signal energy, and resolution enhancement reduces the signal-to-noise ratio of the resultant 
spectrum. The aim of resolution enhancement is to reduce line widths without degrading the 
signal-to-noise ratio unacceptably. The natural decay of individual NMR signals is normally 
exponential, but countering this decay by multiplication with a rising exponential would lead to 
steeply rising noise. To stop the exponential rise in noise a further weighting using a function 
with a steeper decline is required. A weighting function W(t) composed of a rising exponential 
with time constant te and a falling Gaussian with time constant tg 
[2] 

 
is generally the method of choice for resolution enhancement. W(t) can also be written as a time-
shifted Gaussian 
[3] 

 
where ts=t2

g/(2te). If te is equal to the decay constant of the experimental NMR signal, then 
multiplication by W(t) before Fourier transformation converts a Lorentzian lineshape of width 

1/(πte) Hz to a Gaussian of width . Since spectra normally contain a 
range of line widths, it is usually necessary to experiment with te and tg to find the best values for 
a given region of a spectrum. Because instrumental effects such as field inhomogeneity make 
experimental line shapes non-Lorentzian, resolution enhancement is best combined with 
reference deconvolution (see below). Figure 3 shows the application of Lorentz–Gauss resolution 
enhancement to a proton multiplet. 



 
Figure 3  

Expansions of the multiplet at 5.1 ppm in the 400 MHz proton spectrum of geraniol in 
deuteriomethanol: (a) raw spectrum; and (b) spectrum after Lorentz–Gauss conversion using 

rising exponential weighting with a time constant of 1/π s and Gaussian weighting with a time 
constant of 1 s. 

Even where neither sensitivity nor resolution enhancement is sought, time-domain weighting is 
desirable where some NMR signal survives at the end of the sampled data. Such a truncated 
dataset is equivalent to the full, untruncated signal multiplied by a window function; the 
convolution theorem shows that the resultant spectrum will contain the true line shapes 
convoluted by a ‘sinc’ [sin(x)/x] function, giving rise to ‘wiggles’ on either side of lines. 
Applying a weighting function W(t), which brings the time-domain data smoothly to zero 
(‘apodization’), can reduce or suppress such undesirable artefacts. 
 
Most NMR spectra are presented in phase-sensitive mode, but this is not appropriate where the 
phases of signals vary rapidly or unpredictably with position, as in some magnetic resonance 
imaging and multidimensional NMR experiments. The modulus of a complex Lorentzian line 
shape shows a very broad base because of the contribution from the (imaginary) dispersion mode 
component. This can be suppressed if time-domain weighting is used to force the experimental 
signal into a form that is time-symmetric, for example using the function W(t) above with a small 
te (‘pseudo-echo’ weighting) or using a half sine-wave (‘sine-bell’ weighting). Although it is 
common to arrange for such weighting to leave the maximum of the weighted signal at the 
midpoint of the experimental data, this is neither necessary nor always desirable. Absolute value 



mode presentation is the norm where phase cycling or pulsed field gradients are used to produce 
signal phase modulated as a function of t1 in 2D NMR; it is to be avoided where possible because 
overlapping peaks are distorted by interference between their dispersion mode parts. 

Fourier Transformation 
The classical frequency domain spectrum S(ν) is the Fourier transform of the FID s(t): 
[4] 

 
where the integration limits reflect the fact that the FID starts at time zero and is recorded for a 
time ta. Practical spectrometers use digital technology, so the FID s(t) is digitized at regular 
intervals Δt to give a time series of M points sk=s[(k−1)Δt], where (M−1) Δt=ta, and a discrete 
Fourier transform (DFT) is carried out using the Cooley–Tukey FFT algorithm. The DFT of a 
time series of N complex points with spacing Δt generates a frequency spectrum which is a series 
of N complex points with spacing 1/(NΔt) Hz: 
[5] 

 
where the frequency of the nth point is (n−1)/(NΔt) Hz. Both the continuous and the discrete 
Fourier transform can use several different sign and normalization conventions; those given here 
are widely used, but others are equally valid. Spectrometers are almost invariably restricted by 
the FFT to Fourier transforming numbers of points N which are powers of 2. 
Discrete sampling in the time domain introduces an ambiguity into the frequency domain: 
signals at frequencies separated by multiples of 1/(Δt) Hz are indistinguishable, since their 
relative phases only change by multiples of 2π between sampling points. NMR signals which lie 
outside the range 0 to (N−1)/(NΔt) will be ‘aliased’ by adding or subtracting the spectral width 
1/Δt until they lie within this window, as seen in Figure 4. Since the signals that emerge from the 
spectrometer receiver may have positive or negative frequencies, the output of the DFT needs to 
be rotated by N/2 points [1/(2Δt) Hz] so that the digitized spectrum covers the range −1/(2Δt) to 
(N/2−1)/(NΔt) Hz. By convention, the resultant spectrum is plotted with frequency increasing 
from right to left, so that the most shielded nuclei (those with lowest chemical shift) lie at the 
right. Some older spectrometers sample the real and imaginary receiver channels alternately 
rather than simultaneously, using a real rather than a complex Fourier transform; signals outside 
the spectral width then ‘fold’ back into the spectrum by reflection about the frequency limits 
±1/(2Δt). 



 
Figure 4  

75.4 MHz proton-decoupled 13C spectra of 30% menthol in deuteriochloroform, (a) recorded 
with all signals within the spectral window, and (b)–(d) with the transmitter displaced to high 

field in 500 Hz steps. Spectra (c) and (d) show the aliasing of the high-field signals to reappear at 
the low-field end of the spectrum. 

Phasing 
The measurement of NMR data must wait until the radiofrequency pulse and its after-effects 
have died away, which can take several tens of microseconds; analogue or digital filtration also 
delays the arrival of the NMR signal at the receiver output. The effect on an NMR signal of a 
delay time δ is to add a phase shift exp(2πiνδ) to a signal of frequency ν, causing the signal phase 
to vary linearly across the spectrum. In addition, the relative phases of the receiver reference 
signals and the transmitter pulse are arbitrary, so both a zeroth- and a first-order phase correction 
are needed to bring all signals into absorption mode. The phased spectrum Sp(ν) can be written 
as: 
[6] 

 
where the zeroth-order and first-order phase shifts ϕ0 and ϕ1 are normally determined either 
automatically, or by the spectrometer operator using an interactive display. Figure 5 shows a 
typical spectrum before and after phasing. 



 
Figure 5  

75.4MHz proton-decoupled 13C Spectra of 30% menthol in deuteriochloroform, (a) before and 
(b) after zeroth- and first-order phase correction. 

First-order phase correction has one insidious effect, baseline distortion. A frequency-dependent 
phase shift cannot make up for the data that were lost during δ; the baseline error is just the DFT 
of the missing data. However, provided δ is small compared to Δt, this baseline curvature can 
easily be corrected during postprocessing of the spectrum. In 2D NMR, there will be different 
time delays δ1 and δ2 in the two time dimensions; phasing again is normally carried out using an 
interactive display. 

Linear Prediction 
A FID and its Fourier transform contain exactly the same information, but sometimes this is 
insufficient to give a readily interpretable spectrum. Where there is adequate internal evidence 
within the FID, it may be possible to extrapolate the NMR signals forwards and/or backwards in 
time to synthesize missing data and hence create a time-domain signal that transforms to a 
clearer spectrum. The two commonest uses of such an extrapolation are backwards in time to 
replace data lost during the time δ, and forwards in time to improve resolution. A typical 
digitized experimental FID contains a series of n exponentially damped, complex signals, plus a 
background of random noise. The NMR signal can be written as: 
[7] 

 
where the complex number αj=Aj exp(iϕj) defines the phase ϕj and amplitude Aj of the jth signal, 
and βj=exp(2πiΔtνj) exp(−Δt/Tj) is determined by the frequency νj and decay constant Tj. The 
contribution made by component j to point sk is just the contribution to sk−1 multiplied by βj. 
Linear prediction (LP) algorithms1,2 take a FID of M points and fit this time series with a set of m 
complex coefficients aj 
[8] 



 
so that point k is expressed as a linear combination of the previous m points (forward prediction), 
or of the subsequent m points (backward prediction) 
[9] 

 
A variety of algorithms exist for finding the coefficients aj and multipliers βj, with which the 
experimental data can be extrapolated forwards or backwards; all share some common problems. 
Linear prediction has difficulty distinguishing between positive and negative decay constants Tj, 
and so is best suited to time series in which all the decay constants are either positive or negative, 
allowing spurious β values to be rejected. The number m of coefficients aj to be used has to be 
decided by the experimenter: too few, and peaks will be missed: too many and noise will be 
treated as signal. NonLorentzian line shapes make exponential damping a poor approximation, 
increasing the number of coefficients needed. 
 
Linear prediction is (despite its name) a nonlinear method and can produce very misleading 
results, but with care it can greatly ease interpretation of poorly digitized spectra. It is 
particularly useful in 2D NMR, where signals are routinely truncated in the t1 dimension. Several 
other processing methods designed to supplement measured data with inter- and extrapolated 
data points are described below. 

Maximum Entropy Reconstruction and the 
Filter Diagonalization Method 
Although linear prediction can be used to extract spectral data directly from a FID (‘parametric 
LP’), it is commonly used to extrapolate the experimental time-domain data, which are then 
weighted and transformed as normal. Maximum entropy reconstruction3,4, in contrast, seeks to fit 
the experimental FID with a model function that contains the minimum amount of information 
consistent with fitting experiment to within the estimated noise level. The criterion of minimum 
information corresponds to the maximum Shannon informational entropy S(p), which for a 
probability distribution p is defined as 
[10] 

 
Maximum entropy methods have generated considerable controversy; they have been described 
(a little unkindly) as generating more heat than light. Their results can show spectacular 
improvements in signal-to-noise ratio, but this should not be confused with sensitivity of 
detection. Maximum entropy methods successfully pick out those signals that are above a 
defined threshold, but miss those below it; the signal amplitude estimates produced are 
comparable to those obtainable by simply fitting a model line shape to the Fourier transform 
spectrum. Thus for well-sampled experimental data the advantages of maximum entropy 



methods are largely cosmetic, and come at a high computational cost. Where such methods can 
be very valuable is with data sets that are damaged, incomplete, not sampled at uniform time 
intervals, or require deconvolution. 
 
One alternative method for processing truncated datasets is the filter diagonalisation method 
(FDM)5,6, which uses linear algebra methods to estimate the frequencies, linewidths and 
intensities of Lorentzian lines in a spectrum. For experimental data with good signal-to-noise 
ratio the FDM can give very large improvements in resolution. 
 

Non-Uniform Sampling 
 
So far, the nonlinear processing methods described have been applied to conventional 
experimental data, with data points sampled at a constant rate. While such data still form the 
backbone of NMR applications, and almost all FIDs are still sampled uniformly, there can be 
significant advantages to other sampling strategies, for example in the indirect dimensions of 
multidimensional experiments. One of the primary reasons for multidimensional NMR is to gain 
resolution, separating signals according to several different parameters, e.g. the chemical shifts 
of different isotopes. Multidimensional spectra are therefore significantly sparser than 1D 
spectra, with the signals occupying a much smaller proportion of the spectral range. One 
consequence is that as the number of dimensions increases the signal parameters become more 
and more over-determined by the (fully sampled) experimental data: far more data points are 
acquired than are needed to characterize the information content of the multidimensional 
spectrum. It is thus possible, with suitable data processing, to obtain the desired information with 
far fewer individual measurements of FIDs, by using non-uniform sampling in the indirect 
dimensions. 
 
A wide variety of methods have been proposed that allow complete spectra to be obtained from 
partial multidimensional datasets. The choice of method depends among other things on the 
nature of the 1D spectrum, the resolution needed, the degree of overlap anticipated, the data 
processing algorithms available, and the extent to which spectral artefacts can be tolerated. 
 
Where the 1D spectrum is relatively sparse, with little overlap between multiplets, Hadamard 
encoding using prior knowledge of the 1D spectrum allows a multidimensional spectrum to be 
generated using a very small number of distinct acquisitions, tailored to the frequencies 
required7,8. In Hadamard spectroscopy, the evolution time in the indirect dimension is replaced 
by phase-modulated multi-site frequency selective excitation. The minimum number of 
acquisitions needed is equal to the number of different chemical shifts for which information is 
required, rather than the number needed to digitize the full range of chemical shifts studied. 
Recent applications of Hadamard-encoded NMR spectroscopy have shown increased time 
resolution resulting from very fast spectral acquisition, while maintaining the spectroscopic 
resolution associated with 2D spectra. Specific examples include measurement of proton-
deuteron exchange kinetics, and frequency-resolved diffusion and relaxation measurements of 
chemically similar species in mixtures. The use of Hadamard-encoded filters to measure methyl–
methyl cross-relaxation has also been demonstrated. 
 



Where spectra of dimension greater than 2 are required, conventional acquisition is extremely 
time-consuming because of the need to record a large number of increments of each evolution 
time. A particularly simple scheme for non-uniform sampling of the indirect dimensions is to 
record FIDs only for certain fixed ratios of evolution times, incrementing the two times in 
sympathy9,10. Each set of radially-sampled data, along a fixed angle in time space, Fourier 
transforms to give an integral projection of the signal intensity along the same angle in frequency 
space. The advantage to this type of choice of which data points to sample is that the full 
spectrum can then be deduced using projection-reconstruction algorithms, common in imaging 
methods such as computed tomography and MRI, in a process analogous to deducing the three 
dimensional shape of a person’s head by examining a series of silhouettes drawn at different 
angles. Practical problems include the need to deal with ambiguities introduced by signals 
overlapping in projections, the effects of noise, and artefacts introduced by the reconstruction. 
Projection-reconstruction methods can allow the analysis of very high dimensional spectral data 
(“hyperdimensional spectroscopy”). 
 
The most general case is where FIDs are sampled for only a small fraction of the full range of 
values of evolution periods. Provided that, as noted above, sufficient measurements are made to 
define unambiguously the frequencies of all the signals in a multidimensional spectrum, very 
large time savings become possible. As the number of dimensions increases, so the proportion of 
the potential data space that needs to be acquired reduces, keeping the overall experiment 
duration required manageable. The first problem is to decide on a rational basis for choosing 
which data to acquire, i.e. which values to use for sampling the different evolution periods4. 
Although in principle it is possible to use any values for these, in practice values are usually 
constrained to lie on a Nyquist sampling grid – in other words measurements are made for a 
subset of the evolution time values that would be used in a complete conventional acquisition. 
Common choices include pseudorandom sampling and Poisson Gap scheduling. Once data have 
been acquired, a variety of different algorithms can be used to construct spectra. Choice of 
method depends amongst other things on the sparsity or otherwise of the spectrum, the signal-to-
noise ratio, and prior knowledge. Compressed sensing methods such as iterative soft thresholding 
(IST) and iterative re-weighted least squares (IRLS) have proved popular and effective11,12; 
maximum entropy is also effective4 but has heavy computational demands; and multiway 
decomposition methods, which in nondegenerate systems can provide unique decompositions for 
datasets of dimension three or greater are also effective and have proved popular in protein 
NMR13,14. 

Postprocessing Techniques 
The simplest and most widely used form of postprocessing is integration of the signal intensity. 
The integral of a resonance is proportional to the number of spins contributing to it; thus the 
relative numbers of nuclei in different chemical groupings can be found by comparing the 
integrals of their signals under appropriate experimental conditions. Accurate integration almost 
always requires operator intervention to carry out baseline correction, varying according to need 
from simple offset and slope correction through to the subtraction of a baseline calculated by 
spline or polynomial fit to operator-defined regions of empty baseline. 
 



A second common example of postprocessing is the listing of signal heights and positions (‘peak 
picking’), for the measurement of chemical shifts and coupling constants, or as the first step in 
the extraction of parameters such as relaxation times, rate constants or diffusion coefficients. In 
principle, the integral of a signal should give a better estimate of signal amplitude than peak 
height, being independent of line shape; in practice, baseline errors and signal overlap mean that 
peak height measurements are usually preferred for intensity comparisons between 
corresponding signals in different spectra. 
 
Where signals overlap, neither integration nor peak picking gives accurate signal intensities. 
Here iterative fitting can be used to decompose the experimental spectrum into contributions 
from individual lines, typically assumed to have Lorentzian or Gaussian shapes; the positions, 
amplitudes and widths of the theoretical line shapes are varied to minimize the sum of the 
squares of the differences between the experimental and calculated spectra. Such least-squares 
fitting is easily perturbed by instrumental distortion of the line shapes, for example as a result of 
static field inhomogeneity, so the best results require either great care with shimming or some 
form of compensation for instrumental line shape contributions. 
 
One effective way to compensate for many instrumental sources of error is reference 
deconvolution15. Since most instrumental errors (e.g. static field inhomogeneity and magnetic 
field instability) affect all signals equally, multiplying the experimental FID by the complex ratio 
of the theoretical and experimental signals for a reference resonance leads to a spectrum in which 
such errors have been corrected. This technique can be used to ensure that all lines are basically 
Lorentzian, and also to enforce strict comparability between different spectra in a series, for 
example to correct t1 noise in multidimensional NMR. 
 
Many other data processing techniques are used to extract useful information from experimental 
NMR spectra. Signal intensities compiled by peak picking may be fitted to an exponential or 
Gaussian function, as in the determination of relaxation times and in pulsed field gradient spin-
echo measurements of diffusion coefficients. The latter experiment can be extended to the 
construction of a pseudo-2D spectrum in which signals are dispersed according to chemical shift 
in one dimension and diffusion coefficient in the other (see “Diffusion-ordered spectroscopy” 
below). In many spectra the extraction of chemical shift and coupling constant values is hindered 
by second-order effects (‘strong coupling’); the analysis of strongly coupled spectra is most 
effectively carried out using quantum-mechanical simulation. This can be partially automated in 
favourable cases, the experimental spectrum being used as a target for least-squares fitting in 
which the variable parameters are the chemical shifts and coupling constants rather than simply 
the signal positions, amplitudes and widths. The extraction of kinetic parameters from exchange-
broadened band shapes (‘lineshape analysis’) can be similarly automated. An important 
application of automated post-processing of signal intensities, sometimes after the agglomeration 
of intensity from individual spectral regions (“binning”), is in metabolomics/metabonomics16. 

Ultrafast multi-dimensional methods 
Whether full or partial sampling of the indirect dimensions of a multidimensional NMR 
experiment is used, the experimental time demands are considerable. One alternative is to use 



multiplexing to encode information on evolution time into a spatial dimension, allowing all the 
data needed for a complete two-dimensional spectrum to be recorded in a single scan17,18. Some 
changes in data processing are required, but these are normally based on conventional Fourier 
methods. Derived from echo planar methods in magnetic resonance imaging, this approach 
makes some sacrifices in sensitivity and NMR resolution but allows a complete spectrum to be 
recorded in as little as a second, enabling 2D methods to be used to study phenomena such as 
refolding processes and hydrogen-deuterium exchange in proteins to be studied. In combination 
with hyperpolarization, ultrafast methods allow 2D correlation spectra of proteins to be recorded 
at submicromolar concentrations19. 

Diffusion-ordered spectroscopy 
Diffusion-ordered spectroscopy (DOSY) separates the NMR signals of different species 
according to their diffusion coefficient. In a pulsed field gradient spin echo experiment, the 
signals from a given substance in a mixture normally decay as a function of gradient amplitude at 
the same rate, determined by its diffusion coefficient, allowing a bilinear NMR data set recording 
signal variation as a function of chemical shift and of gradient amplitude to be assembled. In the 
simplest DOSY analysis, fitting the signal decay for each peak to the appropriate form of the 
Stejskal-Tanner equation yields a diffusion coefficient for each signal. These data can then be 
used to synthesise a 2D spectrum in which the normal 1D spectrum is extended into a second, 
diffusion dimension, giving a contour plot of signal strength against chemical shift diffusion 
coefficient. In 2D DOSY the initial diffusion-weighted spectra are 1D; adding diffusion 
weighting to 2D experiments such as COSY, NOESY or HMQC gives the corresponding 3D 
DOSY spectra. The difficulty of extracting accurate and meaningful diffusion parameters from 
overlapping signal decays sets strict limits on the diffusion resolution. To identify small 
differences reliably, it is necessary that systematic errors be reduced to an absolute minimum. 
The challenge of designing successful high-resolution DOSY techniques is to combine 
experimental methods that minimize such errors with data analysis procedures which 
compensate as accurately as possible for the errors that remain. Applications of DOSY NMR 
include identification of the components and impurities in complex mixtures, such as body 
fluids, or reaction mixtures, and technical or commercial products, for example, comprising 
polymers or surfactants. 
 
Data processing is a key component of DOSY NMR. Both univariate and multivariate methods 
have been used, but all have difficulties when applied to real-world cases. The big challenge is 
that signals overlapping in the NMR dimension(s) of the experiment can be very difficult to 
disentangle in the diffusion dimension, because of the intractable problem of separating different 
superimposed exponential signal decays. A great deal of ingenuity has gone into designing 
experiments to minimize signal overlap, and data processing methods that allow the maximum 
interpretable information to be extracted from the experimental measurements. The former 
include pure shift methods, in which the effects of homonculear scalar couplings are suppressed 
in order to yield spectra with just a single signal for each distinct chemical shift20. Examples of 
the latter include single-channel methods such as multiexponential fitting (SPLMOD) and 
continuous diffusion spectrum fitting (CONTIN), and two multivariate such as the direct 



exponential curve resolution algorithm (DECRA), multivariate curve resolution (MCR), and the 
CORE and SCORE methods. 

Statistical methods 
Conventional multidimensional NMR methods generate spectra that display relationships 
between signals that have a direct physical basis, for example a scalar coupling (e.g. in COSY or 
HSQC) or a through-space coupling (e.g. in NOESY or ROESY). A more general approach to 
defining relationships is to plot the covariance between signals in different dimensions21,22. This 
can be used as an alternative to conventional Fourier processing, e.g. in COSY or TOCSY, to 
generate alternative representations of the data (“covariance processing”), and can be extended to 
allow construction of spectra that cannot be obtained directly by conventional means, for 
example correlating nuclei that have no direct coupling (“indirect covariance processing”). In 
combination with pure shift methods, covariance processing can yield 2D correlation spectra in 
which all homonuclear coupling structure has been suppressed23. 
 
The implementation of an approach known as statistical total correlation spectroscopy 
(STOCSY) for aiding the identification of the various NMR peaks from a given molecule of 
potential biomarker interest in complex biochemical mixtures, has been a recent development24. 
STOCSY takes advantage of the multi-collinearity of the intensity variables in a set of 1D 
spectra (e.g. 1H NMR spectra) to generate a pseudo-2D NMR spectrum that displays the 
correlations among the intensities of the various peaks across the whole dataset. This method is 
not limited to the usual connectivities that are deducible from more standard 2D NMR 
spectroscopic methods such as COSY or TOCSY, and hence is applicable to singlets and to 
peaks from functional groups that are far apart in a molecule. 

See also 
Fourier Transformation and Sampling Theory, Laboratory Information Management Systems 
(LIMS), NMR Principles, NMR Pulse Sequences, NMR Spectrometers, Two-Dimensional 
NMR. 
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